
Easydrawer - A 2D Geometric Construction Tool

Thomas Weiner∗

534 / 0525190
Bachelor Thesis

Figure 1: Easydrawer - User-Interface Demo.

Abstract

Easydrawer is a graphical computer application which helps users
to draw 2D constructions as they would do on a sheet of paper using
a pair of compasses, a ruler and a pen. Easydrawer can significantly
increase the productivity of geometrical drawers and help in making
the construction process transparent to persons who are currently
trained in technical drawing.

The application comes with some features which specially qual-
ify it for educational use. They are mainly: colorization of prim-
itives, gradually playing back creation-history, entering author’s
comments for each construction step, hiding or highlighting con-
struction parts and giving objects a name. Users are able to directly
use any paper-construction know-how with this tool. This means
that users will not forget how to draw on a sheet of paper.

In addition, Easydrawer supports geometric drawers when it comes
to quality (exactness in distance and angle measurement, calculat-
ing intersections and completely dirt-free constructions), working
speed and simplifying their job (blending-out uninteresting parts of
the construction or coloring primitives, for example).

To cover all constructions which are possible on a sheet of paper,
the following primitives and operations are integrated:

• Primitives: points, lines, circles, text (as a primitive or as de-
scription of other primitives), splines (for free-hand parts as
they are needed to draw ellipses or parables, for example) and
areas (for shadow simulation).

• Operations: intersection of two lines, line and circle or two

∗e-mail: tw@attingo.com

circles, changing visibility mode of primitives and coloring
primitives.

Keywords: geometrical drawing tool, ruler-and-compass con-
struction, point, line and circle drawing, 2D constructions, inter-
secting lines and circles

1 Introduction

Almost everyone begins to train his power of three-dimensional
imagination with the help of a sheet of paper and a pen. In the mod-
ern computer age, geometrical drawing on a sheet of paper will, of
course, play a more and more tangential role except in some niches;
for example studying or constructing fast drafts.

However, in technical drawing on a sheet of paper, various prob-
lems can occur, especially after many construction steps. Geome-
ters have developed solutions to solve or reduce such problems.
Some of them are listed in Table 1.

Easydrawer exactly comes in at learning of technical drawing and
solves all problems listed in Table 1 (except for very large construc-
tions, which are not in the scope of this application). This software
is a result to the following conclusions:

• Some of the stated problems will never be completely solved
for ruler-and-compass constructions on a sheet of paper. This
applies to “confusing line clutter” and “dirt on paper” which
are impossible to prevent when the construction reaches some
complexity. “Loss of exactness” is not neccessarily given
when the geometer works exactly.

2 THEORY

Table 1: Ruler-and-compass construction problems.
Problem Solution / Reduction

confusing line clutter construct thin help-lines,
highlight important parts,
name primitives

dirt on paper draw only really essential stuff
continually clean rulers, fingers
cont. blow dirt off the paper

loss of exactness be very exact
use drawing boards
use sharpened pencils

• All of these problems can be solved by state-of-the-art com-
puter software. But this existing software is either not as low
level centered as is needed or it is not easy to learn or not
comfortable enough to work with.

• Geometrical drawing by hand should not be eliminated be-
cause it develops skills with ruler, compass, pencil and paper
which would be irreplaceably undeveloped otherwise.

The main goal of this application is to solve all these problems, to
be easy to learn, comfortable to use and to be low level centered
in order to stay exchangeable to hand-made constructions. This
software does not attempt to replace drawing on a sheet of paper. It
tries to extend it.

Handling Easydrawer is easy, the learning curve in the use of this
application is short and the course of construction is not abstracted.
This is why the differences to hand-made drawing, when compared
to the way of construction, are negligible. As a result, users can
apply their given know-how from drawing on a sheet of paper and
simply port it to Easydrawer and vice versa.

Furthermore, constructing in Easydrawer is, except for some sim-
ple examples, completely reduced to keyboard. The application in-
troduces a command-line-configuration-file which allows users to
flexibly administer the dynamic command-lines.

The possibility to define help-lines and to switch between differ-
ent visibility modes allows users to get distinct views of the con-
struction with different parts highlighted. Other abstraction layers
known from common graphics packages, like blendable layers, are
not included. They would easily remove construction complexity in
very large projects. On one hand, Easydrawer is not developed to
handle large projects. On the other hand, this would bring in addi-
tional complexity to the user interface and have a bad influence on
the learning-curve. Furthermore, when someone is new to technical
drawing, he/she will most likely not start out with extremely large
projects. This is why the missing possibility to handle increasing
complexity is not relevant.

The results of the user-test uncovered two main things:

1. The participants reach an extreme improvement of construc-
tion efficiency in comparison to the beginning of their work
with Easydrawer.

2. They reach a completely new level of exactness compared to
hand-made drawings when provided the same amount of time.

An additional advantage of Easydrawer is being platform indepen-
dent and runable either without an installation phase or by provid-
ing a very simple one. The current version of Easydrawer needs no
installation. Special installation of additional packages is avoided.

Easydrawer uses Java because it is best suited for the need of plat-
form independency and provides a built-in graphics library (AWT)

which perfectly fits for managing the graphics output. AWT is nei-
ther as fast, nor are the resulting images comparable toDirectX or
OpenGL renderings because of missing features like direct use of
graphics hardware or anti-aliasing. This is no real problem because
Easydrawer is not intended to be used in a professional environment
where beautiful and aesthetic results need to be presented.

It is worth mentioning that being platform independent and having
no installation phase was vital for realizing the user-test. The school
computers did not allow installation of any software.

2 Theory

This section covers most of the theory which was needed to im-
plement Easydrawer’s functionality. The first part of this section,
“Ruler-and-Compass Construction”, deals with general information
about technical drawing which directly leads to Easydrawer’s func-
tionality range and special look&feel. The next part illuminates
“Easydrawer’s Visualization Support”, covering colored primitives,
help-lines, line thickness, areas and splines in detail. The theory
section concludes with the “Keyboard Input System” part which
clarifies Easydrawers command-line input interface.

2.1 Ruler-and-Compass Construction

Definition of “constructing” in technical drawing introduced by Eu-
clid:

Drawing an exact image of a figure using suitable instruments
under specified conditions.

In a more detailed form, suitable instruments are: the idealized ruler
(being of infinite length, having no markings on it and only one
edge) and a pair of compasses only. Exact means no construction
step is valid where anything is “measured” or “compared” only by
eye. Comparing, for example, a length or an angle from reference
objects (like a ruler with markings on it would be) is not as exact as
needed and, because of this, does not count as solution.

Why do we need these restrictions? They separate the field of ex-
act technical drawing, which is also used to prove mathematical
theorems, from the wide and unprecise field of painting which con-
siders viewers satisfaction as the main goal. These restrictions lead
to the following basic constructions (exactly taken from [Wikipedia
2010]) also shown in Figure 2:

• Creating the line through two existing points.

• Creating the circle through one point with centre another
point.

• Creating the point which is the intersection of two existing,
non-parallel lines.

• Creating the one or two points in the intersection of a line and
a circle (if they intersect).

• Creating the one or two points in the intersection of two cir-
cles (if they intersect).

As a prerequisite for these constructions, Easydrawer needs to im-
plement its most basic type, the point. This leads to the following
additional operation, which is needed to perform any of the previ-
ous constructions:

• Creating the point at any position on the plane.

– 2 –

2.1 Ruler-and-Compass Construction 2 THEORY

Figure 2: Basic constructions [Wikipedia 2006].

This point construction does not soften the rules described above as
long as:

• unlimited point creation is only used at initialisation phase of
the construction (following the particular problem specifica-
tion) or

• when just “a” point is needed to go on with construction (this
point’s position must be freely selectable)

– compare pointing anywhere on the plane with closed
eyes (allowing some simple restrictions as “the result-
ing point must not lie on a specified line/circle”).

These construction methods enable users to do everything except:

• “squaring the circle”, “doubling the cube”, “trisecting the an-
gle” or other famous tasks proven to be impossible to be
solved when sticking to strict ruler-and-compass construction,

• colorizing constructed areas (shadow casts),

• interpolating a curve running through a set of predefined
points (splines),

• giving primitives a name or writing text anywhere on the
sheet,

• specifying different thickness of primitives, and

• coloring the primitives.

To be able to evaluate constructions, the following two methods are
implemented. The existence of these methods does not weaken the
construction process unless they are only used to evaluate lengths
and angles:

• Measure the distance between two existing, non-equal points.

• Measure the angle between two existing, non-parallel lines.

The following additional constructions stick to strict ruler-and-
compass construction but make life much easier for users:

• Creating the line specified by the starting point and its direc-
tion is orthogonal/parallel to another existing line.

• Creating the line specified by the starting point and its direc-
tion is parallel to x-axis or y-axis.

• Creating the circle specified by the center point and another
circle’s radius as this circle’s radius.

• Creating the circle specified by the center point and the dis-
tance of two existing, non-equal points as radius.

• Creating the circle specified by the center point and the dis-
tance of an existing line and a point, which does not lie on this
line, as radius.

• Creating the mirror of an existing point corresponding to
project origin, x-/y-axis, another existing point or the exist-
ing line which does not go through the specified point.

Even the old Greeks encountered problems, which now are known
to be unsolveable, when sticking to these basic constructions. Tak-
ing into account that a modern software needs to enable users to
get around these restrictions, certain additional constructions are
introduced to Easydrawer. However, changing the construction’s
contents after creation using the “move point” and “edit command-
line” tools produce the best results when users stick to ruler-and-
compass constructions in as many cases as possible.

All following additional constructions soften the possibility to cre-
ate exact geometrical images, which is guaranteed by compass and
straight-edge constructions only:

• Creating the line specified by the starting point and the angle
(radians or degree) either from horizon or from another line.

• Creating the circle specified by the center point and the radius.

• Creating the spline1 (Catmull-Rom) from at least three differ-
ent existing points.

The following features complete the applications functionality
range:

• Creating the text-primitive at a specified position.

• Creating the area-primitive enclosed by a specified border
(See section 2.2.1).

• Specifying visibility (hidden, normal, visible) for all primi-
tives and for all parts of a primitive (See section 2.2).

• Naming a previously created primitive.

• Converting a previously created primitive to a help-line or
backwards to a normal primitive.

• Inking a previously created primitive.

• Deleting a previously created primitive.

• Giving the project a title.

• Adding an author comment to the current screen.

• Toggling the visibility modes.

• Enabling/Disabling visible names and length legend.

• Moving and zooming the viewport.

Meta functionality, partly known from other graphics applications,
is provided by the following commands:

• Saving/Opening projects.

• Saving the current screen to a picture or saving all screens to
continuous pictures.

• Exporting/Importing command-lines.

• Browsing the creation history (screens).

• Undo/Redo functionality.

1See section 2.2.2 for more details on splines.

– 3 –

2.2 Easydrawer’s Visualization Support 2 THEORY

2.2 Easydrawer’s Visualization Support

In general, a geometer’s work can be split into two main parts:

1. There is the construction part, where all the line and circle
constructions and calculation of intersection points are per-
formed. For more information on this topic, see section 2.1
(page 2).

2. They need to keep a visually meaningful end-result in mind
since they most often want to make some issues clear to the
viewer. This section deals with Easydrawer’s visualization
support for geometers.

The lowest level of visualization geometers use in hand-made draw-
ings are different line thickness and style. When they need a help-
line to be able to get forward to the next construction step, they will
draw this help-line very thinly in order to not disturb the resulting
image in the end. Another example is when technical drawers give
an architectural overview. They will either simply ignore all edges
on the backside or draw them dotted to illustrate where they are. Si-
multaneously, edges in the foreground are painted in a thicker style
to make clear that they are part of the end result. Easydrawer fully
supports these basic visualization concepts.

A fundamental feature to achieve these thin construction lines and
reduce complexity is the help-line concept. Each primitive in Easy-
drawer can be toggled between being a help-line or a normal-style
primitive. Normal-style primitives in general are black or have a
userdefined color. Help-line primitives are displayed in gray, which
tends to look thinner than black and indicate less importance. Help-
lines are only drawn when Easydrawer is in the “everything visi-
ble” mode (available by pressing F5). In the other visibility modes,
help-lines are simply ignored. This feature can be used to reduce
complexity by showing only what is actually needed in the work
progress. See Figure 3 for a demonstration of the help-line feature.

Figure 3: Help-line demo - left: “everything visible”-visibility
mode, right: “ignore help-lines”-visibility mode.

Another basic visualization feature comes with Easydrawer’s visi-
bility function. Each primitive can be shown in a specific visibility
- visible, hidden and normal. Primitives which are marked to be
shown visible appear thick when Easydrawer is in the “invisible
dotted”- (available by pressing F7) or “visible fat”- mode (available
by pressing F8). Primitives which are marked to be shown hidden
appear dotted when Easydrawer is in the “invisible dotted” mode
and are not drawn when in “visible fat” mode. Primitives which are
marked to be shown normal (they are marked to be shown normal
per default) are not shown in “invisible dotted”- and “visible fat”
mode. All non-help-line primitives are shown in normal style in the
“everything visible”- and the “ignore help-lines” modes. Addition-
ally, it is possible to only mark parts of lines, circles and splines to
be visible, invisible or normal. The parts can be separated by points
which must lie on the surface of the primitive. You can see some

Easydrawer constructions which make use of this visibility concept
in Figure 4.

Figure 4: Visibility demo - left: “invisible dotted”, right: “visible
fat”.

Geometers sometimes use colors to put even more importance on
certain construction steps. Easydrawer implements this feature and
allows users to paint all primitives in either

• predefined colors, defined in the “config.properties”-file
or

• userdefined colors, entered by hexvalues.

The default colors specified in the “config.properties”-file are
red, green, blue, black, white, gray, yellow, cyan, magenta, orange
and pink. Userdefined colors are entered in hexadecimal style with
a preceeding #-symbol. For example, either the text “#00ff00” or
“green” changes the given primitive’s color to green.

Users are free to enter new predefined colors in the
“config.properties”-file in the following style:

colors.colorname = R,G,B.

colorname can be replaced by any name which is not already de-
fined in the properties-file. R, G and B specify the red-, green- and
blue parts of a color and each value is allowed to range from 0-255.
The yellow color definition, for example, looks this way:

colors.yellow = 255,255,0.

2.2.1 Areas

A more complex primitive, which is only needed for visualiza-
tion purposes, is the area. Areas mainly enable users to ink re-
gions which are surrounded by other primitives. Geometers spe-
cially need this functionality for tasks like constructing images of
3D scenes with shadow casts, along with other reasons.

In Easydrawer, an area can be surrounded by lines, circles, splines
and a combination of them. These surrounding primitives are called
border primitives. Area definition is programmed in a very
flexible way and therefore supports (nearly2) all possible combina-
tions of border primitives. The only prerequisites are: each border
primitive and each intersection point between lines ∩ circles and
two circles must already exist when area creation is initialized.

A triangle is the simplest possible area because it has only lines as
border primitives. Lines do not need additional information to form
the border. See Figure 5 for a triangle example.

2see page 6 for the limitations.

– 4 –

2.2 Easydrawer’s Visualization Support 2 THEORY

Figure 5: Area demo - Triangle.

The situation gets a little more complicated when creating an area
with more than three border lines. There are two ways an area cre-
ation could be interpreted in a “four border line”-situation, as Figure
6 reveals. Situation A shows that the whole area can be meant. This
interpretation leads to a concave polygon. Situation B shows that
the smaller area can be meant as well and therefore leads to a con-
vex polygon. Easydrawer solves this problem by taking the order of
the border primitive selection into account. This way Easydrawer
elegantly (but not perfectly performing) gets around the area limi-
tations most softwares have, as Hearn and Baker state on page 123
[Hearn and Baker 2004, 1994, 1986]. It does not care about convex
or concave polygons, neither is it limited to “standard-” or “simple
polygons” as Hearn and Baker call “polygons with no crossings”
on page 124 [Hearn and Baker 2004, 1994, 1986]. For any curved
line segment between two points, after constructing an appropriate
Catmull-Rom spline polynom, the corresponding y-value for each
x-coordinate step is calculated. Finally these created points are con-
nected with straight lines that are usually so small that they are not
visible to the user. The arrows in Figure 6 describe the different
order of border primitive selection which lead to situation A or B.

Figure 6: Area demo - 4 lines.

The border primitive combinations for area creation can be classi-
fied in the following groups:

• no intersection - circle alone,

• maximum 1 intersection - line ∩ line,

• maximum 2 intersections - circle ∩ line and circle ∩ circle,

• maximum can be more than 2 intersections - spline ∩ any
other border primitive.

Figure 7 explains how this classification is obtained. It shows all
the border primitive combination possibilities to form an area out
of one or two primitives. One can see the circle is the only primitive
in Easydrawer, which encloses an area all alone. At least three lines
are needed to form a valid area. Furthermore, splines can form a
valid area when at least one additional primitive is used to close
the border. Finally, Figure 7 shows how many intersections (red
numbers) can occur when intersecting these primitives. The number
of intersections and the shape of the affected primitives influences
how many different area possibilities can appear. For example, the

circle-only situation (C) has no intersection and therefore only one
area possibility exists. Circle ∩ Line (CL) and Circle ∩ Circle (CC)
may have two intersections and therefore the CL-case has two area
possibilities (compare to Figure 8) and the CC-case has seven area
possibilities (left part only, right part only, center part only, left and
right part, left and center part, center and right part, left and center
and right part). Splines may have more intersections depending
on the number and position of their control points and the relative
position to the other primitive. The SC-situation for example has 4
intersections and produces 15 different area possibilities (a, b, c, d,
ab, ac, ad, bc, bd, cd, abc, abd (this is the circle only), acd, bcd and
abcd).

Figure 7: Border primitive combination possibilities to form an area
out of one or two primitives.

When only having lines as area borders, it is sufficient to take their
specification order into account to get a valid area. When allow-
ing circles to be part of the area border, the specified area is under-
determined. For example, take a look at the “circle ∩ line”-situation
shown in Figure 8. Let’s assume that the specification order would
be adequate. Easydrawer would get the following information:
“line” → “circle”. So what does the user mean: CLa or CLb? It
is impossible to tell with so little information.

Easydrawer solves this problem by asking which direction to go
on at a specified intersection point. So the following information
is obtained: “line” → “circle” → “first intersection point A” →
“second intersection point B”→ “clockwise”. This information is
interpreted in the following way: the area border is defined by the
“line” until the “first intersection point A” is reached, from there the
circle is the border and is followed in “clockwise” order until the
“second intersection point B” is reached. This interpretation leads
to situation CLb. This definition is able to completely describe the
border of any area with circles partly making up their border.

Figure 8: Circle ∩ line area definition.

– 5 –

2.2 Easydrawer’s Visualization Support 2 THEORY

• CLa could be defined by:

– “line”→ “circle”→ “B”→ “A”→ “clockwise”.

– “circle”→ “B”→ “A”→ “clockwise”→ “line”.

– “line”→ “circle”→ “A”→ “B”→ “¬clockwise”.

– “circle”→ “A”→ “B”→ “¬clockwise”→ “line”.

• CLb could be defined by:

– “line”→ “circle”→ “A”→ “B”→ “clockwise”.

– “circle”→ “A”→ “B”→ “clockwise”→ “line”.

– “line”→ “circle”→ “B”→ “A”→ “¬clockwise”.

– “circle”→ “B”→ “A”→ “¬clockwise”→ “line”.

When two or more circles are shown, everything works similarly.
An example which leads to situation CC shown in Figure 7 is: “left
circle”→ “lower intersection point”→ “upper intersection point”
→ “¬clockwise”→ “right circle”→ “¬clockwise”.

Working with splines3 requires a different approach to get all the
information neccessary to build the border of a valid area. Splines
are, same as areas, intended to be only visual helpers. However,
an intersection of primitives is definitely regarded as a construction
step. This is one reason, besides the question of sence, why splines
can not be intersected with other primitives. An exception to that
rule is when an intersection of two primitives, with one or two of
them having the type spline, is needed to create an area which is
a visual-only primitive as well. As a result, splines can only be
intersected with other primitives when it comes to area definition.

Since a spline can have more than just two intersections with any
other object, the calculation as well as the selection of the correct
intersection point is more difficult than when intersecting the other
primitives. Easydrawer makes use of the nature of Catmull-Rom
splines to perform this task. They are functions which never have
more than one y-value for a given x-value. This implies that the
calculated intersection points can be counted from left to right. At
first, Easydrawer calculates all intersections in R and sorts them by
x-value. Then, by turning over the correct number of the intersec-
tion, the user needs to specify which one is meant.

See Figure 9 for an example of a spline intersecting a line. The
red intersection point numbers are respectively used to build up the
area. SLa, for example, could have been created in the following
way: “spline”→ “1”→ “2”→ “line”. SLc on the other hand could
have been created like this: “line”→ “spline”→ “1”→ “3”.

Figure 9: Spline ∩ line area definition.

Areas built up by two or more splines (alone) follow the same rules
as spline ∩ line areas. See Figure 7 part SL for an example. “Spline
and Circle”-areas however, on one hand need the information about
the circle’s clockwise or counter clockwise orientation from one

3Details about Catmull-Rom-Splines: Section 2.2.2 (page 6).

intersection point to the next and the spline’s intersection numbers,
on the other hand. See Figure 7 part SC for an example.

Figure 10 shows a more complex area example to demonstrate the
power of this tool. The yellow area border is built up of 5 circle
parts, 27 lines and 2 splines.

Figure 10: Complex area demonstration - image created with
Easydrawer with the help of a drawing of Bart Simpson
(http://images.foren-city.de/images/uploads/78667/
simpsons_212.jpg) at http://the-simpsons-fan-forum.
foren-city.de/.

Although Easydrawer has a very flexible area definition method,
not everything is possible this way. An example for a limitation of
this area definition method is shown in Figure 11. Any area with
a hole in the middle can not be created naturally. A workaround
solution is shown on the right side of Figure 11. When the area is
split up into two parts (along the line, in this example) it is possible
to create an area for each of the two sides. The downside of this
approach is that the result must be handled as two different areas.

Figure 11: Area with hole in the middle and solution.

2.2.2 Catmull-Rom Splines

Being able to construct circles, lines, areas (for shadow casts)
and by naming and coloring these primitives, Easydrawer sup-
ports everything neccessary for completing each design process.
Specially all parts being widely regarded as technical drawing.
In practise, geometers and architects often draw ellipses, other

– 6 –

http://images.foren-city.de/images/uploads/78667/simpsons_212.jpg
http://images.foren-city.de/images/uploads/78667/simpsons_212.jpg
http://the-simpsons-fan-forum.foren-city.de/
http://the-simpsons-fan-forum.foren-city.de/

2.3 Keyboard Input System 2 THEORY

conic sections or more general curved surfaces. Figure 12’s left-
most graphic shows an ellipse with the constructed helper-circles
(“Scheitelkrümmungskreise” in German) and the ellipse-surface
points in between. After having constructed enough surface points,
geometers connect these points by approximating the ellipsis cur-
vature. Because of this demand, users need a possibility to connect
points in a natural looking way. From this point of view, this action
can be called “creation of an effect“ on top of the final construction.
Easydrawer implements Catmull-Rom splines to support this oper-
ation, since they have attributes which enable them to create best
modulated results. As Figure 12 shows, in the middle and the right
section, this type of spline fits quite well for this operation.

Figure 12: Construction of an ellipse using splines to form the
shape.

Splines were initially developed to fulfill requirements of aircraft
and shipbuilding industries. In the late 1950ś and early 1960ś
this idea was picked up by several automobile body designers; de
Casteljau, Pierre Bézier or de Boor, to mention just a few. All
of them refined the spline idea, published papers and created their
own spline-sub-types which had better attributes for their specific
purposes. De Boor, for example, wrote an article in 1962 on
“Bicubic Spline Interpolation” and therefore introduced the “B-
Splines” [de Boor 1962]. In 1966 Pierre Bézier wrote an article
on “Définition numerique de courbes et surfaces I” which gave the
“Bézier Curves” its name [Bézier 1966]. “Bézier Courves” were
originally developed by Paul de Casteljau in 1959.

2D Splines in general can be considered to be a mathematical
way of describing a natural-looking connection of a given set of
points. The most common spline-variation is the cubic spline. Cu-
bic splines are made up of cubic functions which are connected at
the given control points. For a specified number of n control points
we need n-1 functions to connect all control points. Cubic splines
are not adequate for this application because they tend to oscillate
too much when switching from one control point to the next. As
the ellipse example displays, this application often needs to connect
points which lie on a curved segment which has the same curvature
sign over more than one or even all control points.

Figure 13: Random points connected using a Catmull-Rom spline.

Finally, Catmull-Rom splines turned out to be a good choice for the
given task. They were developed by Edwin Catmull and Raphael
Rom and are a subtype of the cubic interpolation splines family.
Therefore, their function-parts between each control point are in-
terpreted by a cubic polynom. They have C1 continuity and there-
fore guarantee to exactly hit each control point and to be continuous
regarding the tangent by doing that as Figure 13 uncovers. The tan-
gent of each control point is calculated by taking the previous and
the next point into account. Catmull-Rom splines introduce the pa-
rameter τ , often called tension as seen in the tangent calculation
formula: τ(pi+1− pi−1). The geometry matrix after [Twigg 2003]
looks like this:

p(s) =
[
1 u u2 u3

] 0 1 0 0
−τ 0 τ 0
2τ τ−3 3−2τ −τ

−τ 2− τ τ−2 τ

pi−2

pi−1
pi

pi+1

See Figure 14 for the effect τ has on a Catmull-Rom spline. The
best result for τ , tested on an ellipse part, was 0.5.

Figure 14: The effect of τ on a Catmull-Rom spline (taken from
[Twigg 2003].

In Easydrawer splines can not be intersected with other primitives
because they only represent ONE possible solution for a natural
looking connection between points. Therefore, no spline alterna-
tive can claim to be the real solution for this task. From a geometers
point of view, an intersection with a curve which had been approx-
imated by hand will never be regarded as exact or as legal con-
struction part. When creating an area, the intersection of splines
and other primitives is automatically calculated because they are
needed to form a valid area. These intersections are not returned
as points and therefore do not allow drawers to use them in their
subsequent construction steps.

2.3 Keyboard Input System

A fundamental feature of Easydrawer is its flexible primitive input
and manipulation method. In general users prefer mouse input in
graphics software over keyboard usage. The problem in mouse in-
put is on one hand the missing exactness required for a constructing
tool and on the other hand the need of a large and complex menu to
be able to cover each needed task.

Some softwares solve the problem of exactness with the help of a
zoom function. Others use an additional keyboard editing mode.
Both solutions are not pure because they need additional steps to
fulfill the actually simple task of primitive creation.

Each software suitable for real constructing purposes comes with an
enormous menu to trigger all mouse related tasks. This is not easy
to learn at first and complicates merely simple construction steps
on the long run. Toolboxes with icons and tool-tip-tags or keyboard
mnemonics combined with menu elements allow professional users
to increase their productivity a little bit after they managed to learn
the software.

For these main reasons Easydrawer introduces another concept for
all the main construction tasks. In general it only uses keyboard

– 7 –

2.3 Keyboard Input System 2 THEORY

strokes to trigger actions. Except when it comes to selecting already
existing primitives, the mouse is used to ease this task (although it
is possible to even do this per keyboard). This reduces the usage
of the mouse to a minimum and allows users to mainly concentrate
on the construction and not on “where in the menu do I find the
desired behaviour”. To enable new users to learn this keyboard
input system, a small but always visible help dialogue is displayed
on the right side, showing “what key can be pressed next”. See
Figure 15 for a view at this help dialogue without any key pressed
yet.

Figure 15: Easydrawer screen - Help Dialogue.

This keyboard input system uses the same key for each primitive
or action. For example, one can see in Figure 15 that p is used for
point creation, l is used for line creation and c is used for circle
creation. Whenever a point can be entered the p key is reused. The
same applies to the other primitives. A line creation example is:

l→ p→ 50→−50→ p→ s→ point selection with mouse

The l initializes a line creation. Then p initiates the starting point
creation of this line. 50 and -50 are the coordinates of this starting
point. p and then s tells the system to wait for a point selection by
the user. After the user selected the point the line is created.

Since point, line and circle creation happens remarkably often,
users rapidly learn Easydrawer’s main features. So they are able
to automatically remember the keystrokes and therefore increase
their productivity enormously. Another positive effect, which is re-
lated to this simplified input system, is that users can concentrate
on the construction. This direct input system creates a feeling like
drawing on a sheet of paper. Users can even see the command-line
which resulted in the current screen on the bottom of the panel. See
Figure 16 for an example. The next section takes a look behind the
scenes of this keyboard input system.

2.3.1 Dynamical Command-Line Construction

The sum of all keyboard interaction possibilities forms a system of
command-lines which can be ordered in a tree. Figure 17 shows a
not complete part of the line creation command-lines of this tree.
All tree elements symbolize a keystroke or a mouse selection. In
order to be flexible enough these command-lines are managed and
stored in an extra textfile, the commandlinestrings.txt file sit-
uated in the img/ directory. A typical entry in this file looks like:

Figure 16: Command-line which resulted in the current screen.

keyboard input := f unction calls ? hel p dialogue in f o.

An example for the “keyboard input”-part of an entry in this textfile
is:

l−> p−> x0−> y0−> p−> s−> P ID

The corresponding “function calls”-part looks this way:

p0 =CADPoint(x0,y0);

p1 = this.getOb jectById(P ID);

CADLine(p0, p1);

And finally the particular “help dialogue info”-part contains the fol-
lowing text:

create line−> start point−>

speci f y x− coordinate or click on the canvas−>

speci f y y− coordinate (press enter to f inalize)−>

end point−> enable end point selection−>

select end point

At first readers may recognize that the count of -> in the “key-
board input”-part exactly matches the count of -> in the “help
dialogue info”-part. This is a prerequisite because the user
must be provided a help text at each step of this command-
line. So when splitting the “keyboard input”- and the “help di-
alogue info”-part along the -> we get pairs looking like that:
“l” and “create line”, “p” and “start point”, “x0” and
“specify x-coordinate or click on the canvas” and so
on.

Further the combination of “keyboard input”- and “function calls”-
part makes use of a simple variables concept. x0, y0 and P ID are
variables, which are internally ported from the “keyboard input”-
to the “function calls”-part. p0=CADPoint(x0,y0) is able to in-
terpret the variables x0, y0 and create a new variable p0 for storing
the result of this function. This uncovers a major difference be-
tween the two parts. The “keyboard input”-part can only make use
of a fix amount of variables whereas the “function calls”-part is able
to create completely new variables. The predefined variable names
listed in the commandlinestrings.txt file are shown in Table 2.

– 8 –

2.3 Keyboard Input System 2 THEORY

Figure 17: Easydrawer command-lines tree.

Variables noted with lowercase letters specify numerical or text val-
ues the user can freely enter. For example, x0 in p->x0->y0 can
be substituded by any double value specifying the x-coordinate of
the new point. Variables containing a ID are noted in uppercase
letters and specify primitive ids. Users can only use ids from ob-
jects which already are present in the current project. Because of
that they are called non-free variables.

Suffices L or NL in non-free variables stand for the last created ob-
ject of the respective type or explicitely not the last created object
of the specified type. The support of command-lines with the L
suffix is mandatory to enable users to get in a fast work flow. The
following example shows the creation of a horizontal line, with the
last created point as start point: l->L->P_ID_L->H. In this exam-
ple the user only needs to press the following keys: “l”, “L” and
“H”.

Variables with suffices j/J or k/K are reserved for use within loops.
Loops are urgent to realize spline-, area- and visibility construc-
tions because they have a variable amount of member-primitives or
have to change a primitive’s visibility at each point which lies on
this primitive’s surface. A spline4 can have three or more member
points. An area’s5 border can be built-up from one or more border
primitives. A visibility definition can contain more than one sur-
face points where the visibility type may changes. The following
command-line shows a simplified loop intended to create a spline:

s−> {P IDJ := p j = this.getOb jectById(P IDJ);

this.userPointsCollector.add(p j); |

p−> x j−> y j := p j =CADPoint(x j,y j);

this.userPointsCollector.add(p j);}

:= CADSpline(this.userPointsCollector);

s needs to be pressed to initiate the spline creation process. The
following { indicates where the loop part starts. Then the user
can either select an existing point (P IDJ) or create a new point
(p->xj->yj). The different possibilities are separated by a single
|. } quits the loop mode. Readers possibly recognize that the cor-
responding “function calls”-part is inside the loop, again separated
by :=. The loop is repeated until “Return” is pressed. Then the last
part is accessed.

Each new command-line is added to a list where all already en-
tered command-lines reside. When the panel needs a redraw, all
command-lines from this list are interpreted again, in order to
recreate a valid image. An Easydrawer project file contains all
command-lines and additional stuff like project title or where the

4See section 2.2.2 (page 6) for more details on Catmull-Rom splines.
5See section 2.2.1 (page 4) for more details on areas.

current project center is. When opening a project file, all command-
lines stored in this file are simply added to the list.

Undo- and redo-functionality make use of the same issue. The undo
function simply removes the last command-line from the list and
puts it on a temporary stack. Then a refresh of the painting plane
is initiated. The redo function on the other hand pops the object
on the top of the stack and adds it to the list again. Afterwards the
plane is refreshed as well.

The re-interpretation of the command-lines-array allows to sim-
ply edit an already existing primitive and therefore automatically
change a complete construction. Figure 18 shows how the “move
point” feature can be used to change a finished construction. In this
example only point A has been changed and depending on this ac-
tion everything else changes as well. This is a good way to demon-
strate how the points in a triangle change when one of the specifica-
tion points changes. This feature only works when the construction
sticks to ruler and compass construction6 because otherwhise the
primitives created after the changed point, do not rely on it.

Figure 18: Demonstration of the “move point” tool on a triangle.

When users need to change other parameters of the command-line
than just the coordinates of a free point (free points are no results
of an intersection) they can use the “change command-line” func-
tionality. This function allows users to select any type of primitive
with the mouse. When the primitive is selected, an input box with
the command-line, which created this primitive, appears. It allows
users to directly change any part of the command-line, according to
the following rules:

• the first letter of the command-line stays the same,

• the count of created primitives by this command-line stays the
same and

• the count of created primitives by all following command-
lines stays the same.

6See section 2.1 (page 2) for more details on Ruler and compass con-
struction.

– 9 –

2.3 Keyboard Input System 2 THEORY

Table 2: Predefined variables in commandlinestrings.txt.
x,y double

z double && > 0
x0,x1 double && x0 6= x1
y0,y1 double && y0 6= y1
xj,yj double //for loop variables

alpha double && > -360 && < 360 //angle: degree
beta double && > -2*PI && < 2*PI //angle: radian
text string

intj,intk integer values in loops
P ID any point-ID

P ID0,P ID1 any point-ID && P ID0 6= P ID1
P IDJ,P IDK any point-ID

P ID L the point-ID of the last created point
P ID NL any point-ID BUT P ID NL 6= P ID L

L ID any line-ID
L ID0,L ID1 any line-ID BUT L ID0 6= L ID1

L ID L the line-ID of the last created line.
L ID NL any line-ID BUT L ID NL 6= L ID L

L IDJ any line-ID
C ID any circle-ID

C ID0,C ID1 any circle-ID BUT C ID0 6= C ID1
C ID L the circle-ID of the last created circle.

C ID NL any circle-ID BUT C ID NL 6= C ID L
C IDJ any circle-ID

S ID any spline-ID
S ID L the spline-ID of the last created spline.

S IDJ any spline-ID
T ID any text-ID

T ID L the text-ID of the last created text.
F ID any filled area-ID

F ID L last created filled area-ID
O ID L last created cutable object (line/circle)

O ID NL not last created cuttable object (line/circle)
V ID L last created object with visibility property

B IDJ any object which is a CADAreaBorder
A ID L last created object (ANY type)

The first rule ensures that the return type of the created object is not
changed. The second rule checks if the user, for example, changes
the command-line:

l→ p→ 50→−60→ p→ 0→ 0

to

l→ p→ 50→−60→ X .

The first command-line internally creates three primitives. Two
points and the line. The second command-line creates only two
primitives and therefore changes the total count of primitives in the
project. Any command-line which is interpreted later may use the
second point which could not exist any longer if the second rule is
not executed.

The third rule checks for logical errors which may appear later
when users change a command-line. See Figure 19 for a simple
example. The line and the big circle are intersected and the result-
ing intersection points are the centers of two small circles. When
the radius of the big circle is made smaller, at some point there is
no intersection any more (Figure 19 right). This needs to be inter-
cepted.

Figure 19: Occuring problems when ignoring the third rule.

2.3.2 Multiple Primitive Selection in Command-Lines

In general, Easydrawer supports users when they enter their
command-lines by coloring already selected primitives in green and
selectable primitives in red. Additionally all green primitives can
not be selected twice. See Figure 20 for an example of this feature.

Figure 20: Helper colors during command-line creation.

However sometimes geometers need to select an object twice in or-
der to get the construction done. A common example is construct-
ing the circle, given by its center point and a tangent. See Figure 21
for an explanation of this issue.

Figure 21: Situation where primitive twice selection is neccessary.

As the command-line-part reveils, the circle creation has been
started with c, the center point has been selected with 3, the dis-
tance interpretation between a line and a point has been initiated
with d and l, the line has been selected as its primitive-id is 2 and
point selection has been started with p and s. Now the situation con-
forms to the leftmost graphic in Figure 21. To be able to finish the
command-line, users need to select the circle’s center point again.
Easydrawer allows multiple selection of already selected primitives
when it is explicitely requested by the user. This special request can
be formalized by pressing any key which is not allowed to be en-
tered at the current command-line position. So in this example the
space-key has been pressed and the screen immediately switches
to the middle graphic. Now the point can be selected again and
the circle can be created as it is shown in the rightmost graphic in
Figure 21.

– 10 –

2.4 User-Test 2 THEORY

2.4 User-Test

The target group for Easydrawer are students, who could use it at
school as well at home. Therefore a user-test has been arranged
with a group of eight 7th grade AHS-students. Before the test took
place the students’ teacher had been interviewed about the class’
know-how on different tasks.

All of the students attended a geometrical drawing class and were
familiar with the topic. Regarding the specified tasks they had to
fulfill, they were only used to draw on paper and had never used a
computer program. In a more general way the students also used
computer aided design (CAD) tools in the 3D sector. The differ-
ence between these tools and Easydrawer is the different scope the
term “construction” is interpreted. Easydrawer tries to stick to tra-
ditional technical drawing as it is needed for constructing on a sheet
of paper. The tools the students worked with concentrate more on
the design part and allow users to create different three dimensional
geometric objects with one click and furthermore to move, rotate
and intersect these objects. So for the user-test it could be taken as
given that the students are able to do the tasks from the “know-how”
part as well as from the “introduced to work with PCs” part.

The first step was the design of a questionnaire, which contained
16 questions on the usability of the program and the students’ atti-
tude to geometrical drawing on paper versus the use of a computer.
This questionnaire comes along with a handout, which explains the
main functions of Easydrawer and introduces four examples which
are to be solved by the probants during the user-test. You can see
the handout in Figure 24 and the questionnaire in Figure 25 in the
Appendix for detailed information.

1. The first example is the easiest, because it was designed to
help the probands getting familiar with the program. It con-
tains a step-by-step explanation which tells how to construct
a triangle.

2. The second example deals on constructing the in-circle of a
triangle and is more complex. There is still supportive infor-
mation because new functionality is introduced.

3. In the third example the test persons had to construct an el-
lipse. This example introduced Easydrawer’s “mirror-point”
function.

4. The last task is the most difficult one and there is no additional
information explicitly dealing with Easydrawer. This task’s
description exactly looks like the specification of an ordinary
test example for a paper-construction in a 7th grade.

Before the students were asked to solve the examples a prelimi-
nary talk had been held, introducing the program and its possibili-
ties. This talk took 15 minutes and contained information on Easy-
drawer’s objective, how it is to be used and showed a few short
examples. Without this information the test would not have been as
successful as it turned out to be. Subsequent to this talk the double-
sided handout with a description of Easydrawer’s user-interface and
the four examples was handed over to the participants. Ten minutes
before the test time was up, they were asked to fill out the question-
naire.

2.4.1 Questionnaire

The questionnaire which finalized the user-test contained the fol-
lowing questions and provided the answers listed in Table 3:

1. Are you male [] or female []?

2. Do you know a better name for the program?

3. When you need to draw something on paper, would you prefer
using Easydrawer instead?

4. Can you imagine to use this program in your own projects
(outside of school)?

5. Is learning to work with Easydrawer easy?

6. Is the way of userinput to create primitives intuitive/logical to
you? If no: what would you change? If yes: What do you like
most?

7. Do you have troubles with the intensive keyboard-use this
program forces when manipulating primitives?

8. Can you imagine to draw faster/more efficient and more exact
with the help of Easydrawer than on a sheet of paper?

9. Could find out in the test time whether this tool could be a
learning help for you?

10. Do you miss any functionality you have, when drawing per
hand?

11. Do you miss a delete-functionality (since there is an undo-
functionality)?

12. Do you think there are different approaches when construct-
ing with Easydrawer or on a sheet of paper. What are the
differences (please be exact)?

13. In general, what do you like more - constructing per PC or per
hand and why?

14. Would you miss drawing with pen, ruler and a pair of com-
passes on a sheet of paper?

15. Should computer software be used instead in future?

16. Other comments?

2.4.2 Interpretation of the Questionnaire

All in all, Easydrawer scored off well in the user-test. None of
the probands had difficulties to get familiar with the program and
to solve the given examples. The minority of the students needed
the first example for orientation and getting familiar with the user
interface. When they started with the second example they were
already able to work faster.

All of the probands described the user input as simple and easy to
learn. That militates in favor of the use of Easydrawer in class.
After a short period of familiarisation most of the students were
prepared for working with the program without hours of practising
and introductory lessons. Even probands who described themselves
as not so good at the use of computers had no serious difficulties,
which proves Easydrawer’s usability.

When it comes to the construction of primitives the positive opin-
ions prevail. The students liked the keyboard-explanations on the
right side and the show mode. The predominant use of the key-
board is looked upon favorably because of the easy handling and
high construction speed specially after some training with the soft-
ware. There was also a point of critique: some of the probands
were missing a possibility to delete primitives (in addition to the
undo-functionality).

All of the probands think, that they would draw more efficiently and
faster using the PC. Half of them can imagine using the program for
their own projects and not only in an academic context, consider-
ing the fact that they are students this is a respectable result. The

– 11 –

3 RESULTS AND CONCLUSION

Table 3: User-Test Answers
Q. Yes No Other/Additional

1 • 1 female
• 7 male

2 1 7 • “Helpdrawer”
3 5 3
4 3 4 • “Maybe” (1x)
5 8
6 6 2 • “use of keyboard is very good → high

construction speed”
• “keyboard infos on the right side are

very good”
• “easy to learn”
• “logical but not intuitive”
• “use of uppercase letters is disturbing”

7 1 7
8 8
9 3 5 • “Time was too short.” (1x)

10 3 4 • “Delete functionality”
• No comment (1x)

11 4 4
12 2 4 • “when drawing by hand a line can be

constructed without having points”
• “when drawing by hand, half of a line

can be simply measured” (not true for
idealized ruler and compass construc-
tions introduced by Euclid - see Section
2.1 (page 2) for details on this topic)

• No comment (2x)
13 1 5 • “by hand, I am not well versed in using

PCs.” (1x)
• “by hand, it was always this way.” (2x)
• “by hand, because it is easier for me.”

(2x)
• “Equals” (1x)
• “Differs” (1x)

14 4 2 • No comment (2x)
15 3 4 • “Why not” (1x)
16 • “Sometimes errors occur, the user pro-

duced himself, but did not notice.”
• “Scale is not visible to user.” (included

as a reaction)

minority of the probands said that they would prefer the use of the
program over drawing on paper.

This result is quite interesting. Combining the fact that all of them
think using Easydrawer is faster than painting by hand and the small
number of them preferring the program over drawing on paper,
leads to the following conclusion. The students like drawing per
hand even though using Easydrawer is faster and more exact. This
is also reinforced by the result of question 13 as interpreted below.
This result is exactly what Easydrawer tries to obtain. The software
should be used for learning and afterwards users should be able to
draw on both, a sheet of paper or on computers, using the know-
how which has been previously acquired. This can not be granted
by other software.

When it comes to question 13 (dealing with the future use of pa-
per or computer), some students could not imagine to completely
replace drawing on paper with using a computer program. Consid-
ering the fact that the probands are used to draw on paper to solve
the given tasks, this result is not very surprising. Nevertheless there
were three students who declared that computer software should be

used instead of paper and pencil in future. The results concern-
ing usablity and efficiency show that the attitude towards drawing
with pencil and paper would change in favor of Easydrawer if it
would be used at school regularly. Taking a look on the facts and
trying to foresee the future: Three students out of eight are highly
interested in Easydrawer after one hour of working with the pro-
gram. What happens after one week or one semester of working
with Easydrawer? The number of students favouring Easydrawer
will definitely increase when they realize the software’s full poten-
tial and make use of it.

2.4.3 Opinion of the Teacher

In the run-up to the user-test the students’ teacher had been inter-
viewed after a presentation of the program. He was also asked to
do the tasks on the handout sheet. Altogether the teacher was pleas-
antly surprised: “At the beginnig the program seemed to be difficult
to use, but I soon got familiar with the functionality since the keys
always stay the same.” Finally he stated that he could imagine using
Easydrawer in his lessons.

2.4.4 Evaluation Process

After the user-test the program was revised and the requested
delete-function was implemented. Another addition, finally added
to the program, upon the recommendation of the teacher was a
scale. During the talk with the teacher he mentioned, that Easy-
drawer could also be used in lower grades, because of the easy han-
dling. Therefore a second user-test with lower grade students could
be performed next year.

3 Results and Conclusion

Easydrawer turned out to be a highly flexible tool which allows
technical drawers to create constructions as if they were using a
sheet of paper and a pen. This is why Easydrawer could be used in
studying of technical drawing by both teachers and students. Teach-
ers could do their constructions with Easydrawer to assist students
in understanding and learning. Therefore students could use Easy-
drawers built-in previous- or next-screen functionality which allows
to visualize what happened before or after a specified construction
step. Students on the other hand could create their work with Easy-
drawer and teachers would be able to see exactly what they did by
looking at the construction command-lines.

Easydrawer’s operating range reaches from small constructions
(halfing an angle or creating a triangle and its special points)
to middle-size technical drawings (architecture overviews with
shadow casts in gnomonic projection or visualizing objects in 1-
2-axis). It is not intended to be used for large projects. Therefore it
has little support for abstraction layers, changeability of primitives
after creation and multiple primitives management to mention just
a few reasons. Furthermore, it would be a good idea to use special-
ized software for appropriate construction problems. For example,
when creating objects in 3D space users are encouraged to use soft-
ware which is specialized to assist users working in 3D space like
AutoCAD or others. As such needs end up with complex software
not able to support users given know-how from drawing on a sheet
of paper, Easydrawer distances from supporting large-scale techni-
cal drawings.

– 12 –

3.1 Comparison with other Software 3 RESULTS AND CONCLUSION

The best way to demonstrate Easydrawer’s performance is by show-
ing two technical drawings as they would be in real life. They make
use of nearly every feature the software supports.

The first example, displayed in Figure 26 in the Appendix, shows
the last task from the user-test but has a slightly different specifica-
tion considering the point’s coordinates. This is a 1-2-axis (horizon-
tal and elevation projection) construction of a triangle’s in-circle.

1. The triangle’s edges are given by A(-137/33/79),
B(21/248/288) and C(222/97/174).

2. During the construction process the triangle is rotated along
an affinity axis (blue line named “a”).

3. The rotated triangle and its in-circle are marked to be invisible
in order to be highlighted in “invisible dotted” visibility mode
(C) but not to disturb the image in “visible fat” mode (D).

4. The triangle and its in-circle are regarded as the result of this
construction and are therefore drawn fat. Any other line and
point is marked to be a help-line and therefore only shown in
“everything visible” mode (E).

When taking a more precice look at Figure 26 part E, the mas-
sive number of help-lines shows the urgent need for the help-line-
feature. Part F shows how the drawing looks like when all the un-
necessary help-lines are not shown. With this little number of lines
on the screen constructing is much easier and needs less concentra-
tion.

As Figure 27 in the Appendix informs, the second example shows
the front of a house, drawn in central projection. The house is given
by its horizontal projection (see A’) and its front elevation (see A”).
The central projection (Ac) is achieved by the following construc-
tion steps (attention: the image groups named A and B are specially
arranged after construction has been finished to save space, whereas
image C remains unchanged):

1. Construction of the images of the vanishing points in horizon-
tal projection (Yuc’ and Xuc’) and the points O and H.

2. By placing H, we get the horizon which is a horizontal line
running in Ac.

3. Since the vanishing points Xuc and Yuc lie on the horizon,
we can draw them as well, using normals to the horizon con-
nected with their horizontal projection images Xuc’ and Yuc’.

4. The line running through Xuc’ and Yuc’ is the picture plane,
called π’. H is where the view axis intersects π .

5. To get started with central projection these steps need to be
performed:

(a) Construct an intersection of π’ and any line in horizon-
tal view, which touches the ground (do not take a roof-
edge).

(b) Create a vertical line running through the intersection.

(c) Intersect the vertical line with the lengthened ground
line from front elevation (this is why the first point taken
needs to touch the ground).

(d) Now connect this point with any of the two vanishing
points Xuc or Yuc or both of them, depending on which
axis the line, the point lies on, is parallel to. This is the
first vanishing line.

6. To bring general points, given by the horizontal projection, to
the central projection, the following procedure is used:

(a) Create line between O and the specified point given in
the horizontal projection (A’).

(b) Intersect this line with π’.

(c) Construct a vertical line running through the intersec-
tion.

(d) Intersect this vertical line with the corresponding van-
ishing line (which must already exist).

7. All points intersecting π’ in horizontal projection, come with
a speciality. Any height running through these points is unab-
breviated. So for all of these points, the corresponding heights
can be connected from front elevation with horizontal lines.

Part B in Figure 27 shows the result of this construction without
help-lines. The front elevation is not shown twice because it has
no hidden lines. Part C finally describes a more technical view of
the drawing in the “ignore help-lines” mode. The massive number
of vanishing lines running through the vanishing points Xuc and
Yuc shows that this construction nearly reaches the maximum of
Easydrawer’s field of application. The ever-increasing problem is
the correct line selection and the ability to see whether a line really
runs through a specific point or if it is neccessary to create a new
one. Even at this level, no performance problems can be measured7.

3.1 Comparison with other Software

When comparing Easydrawer with other tools, the following as-
pects are taken into account:

• Functionality (additional/less),

• Learnability, and

• Input-methods.

Easydrawer has a very specialized field of application. Therefore
finding comparable software is difficult. For the comparison two
programs were picked because of their similarity.

3.1.1 Geogebra

Geogebra8 comes with a huge amount of functionality. In general
most construction steps are initiated using the graphical menu at the
top of the window. The program provides good graphical response
when it comes to selecting existing objects. This form of user input
on one hand invites and assists users in taking their first steps with
the tool. On the other hand, it is hard to come into a fast working
flow because it is neccessary to switch between different submenus
of this graphical menu quite often. Figure 22 shows a screenshot
of Geogebra. Probably due to this fact Geogebra also supports a
command-line input feature, allowing users to enter primitives in
parametric form following mathematical conventions. For example,
“g:y=k*x+d” or various functions like “cos(x)” can be used and
combined to create lines and other primitives. This feature is very
flexible on one hand. On the other hand it is hard to learn this
“language” because users do not intuitively know which input will
produce which output and it is hard to predict which text input is
allowed and which not.

7construction done on laptop with 2.20GHz Dual Core CPU and 2GB
RAM.

8http://www.geogebra.org/cms/

– 13 –

http://www.geogebra.org/cms/

3.1 Comparison with other Software 3 RESULTS AND CONCLUSION

In combination the primitive input is easy to understand at first but
users can not get faster when they learned the usage of the soft-
ware. Easydrawer on the other hand fulfills this task but is harder
to start out with because it requires more energy to overcome one’s
inhibition threshold caused by the intense use of the keyboard. Ad-
ditionally Easydrawer’s keyboard input system is very organized,
informs users what can be entered as next step and performs se-
mantic checks during input.

Figure 22: Geogebra’s user interface.

Geogebra has more features than Easydrawer. Some of them are
creating conic sections as ordinary primitives (so they are really
exact and not approximated using splines), using mathematical lan-
guage to describe a function’s graph or the ability to create user-
primitives. Concerning user friendly interpolation or approxima-
tion of curved segments running through or being controlled by
given points, Geogebra offers no user-friendly way as other soft-
wares do by implementing splines.

As conclusion can be stated: Geogebra is exactly the right software
for people who want to construct technical drawings once a week.
When it comes to speeding up the construction process Geogebra
has some (but very limited) potential by using its command-line.
Easydrawer can be used by nearly the same clientele. People should
take a look when they want to raise their productivity, as long as
Easydrawer’s functionality is enough for their purposes.

3.1.2 WinCAG

Easydrawer is furthermore compared with WinCAG9. Figure 23
shows its user interface. WinCAG also offers a very large amount
of functionality but is less organized than Geogebra. For every con-
structing step the huge menu needs to be searched for the proper en-
try. Many entries have no fittingly name and it can not be foreseen
what they will do. The input system is mostly managed by mouse.
WinCAG always uses left mouse clicks for the “yes” in answers
whereas “no” is expressed by a right mouse click. This is a fea-
ture which is quite handy to speed-up construction process. When
an operation has been selected, WinCAG automatically restarts this
operation once the previous one has been finished. The bad thing is:
When users try to click on the menu to select another operation, the
mouse click is incorrectly interpreted as belonging to the already
selected operation and the click most often creates a point at the
upper edge of the screen. To do it right, the ESC-key should be used
to stop the operation mode. The combination of these parameters

9http://www.igpm.rwth-aachen.de/brakhage/Strobl/index.

html

describing the input system results in a user interface which is hard
to use and hard to learn. Easydrawer is intended and implemented
always keeping in mind to create an easy-to-use user interface and
therefore has no difficulties to outnumber WinCAG when compar-
ing usability.

To cover WinCAG’s keyboard support: The tool supports mnemon-
ics for some of the menu items. However, they are not obviously
taken and therefore it is very hard to reach a suitable working flow.

Figure 23: WinCAG’s user interface.

WinCAG implements a very powerful and advanced technology to
watch and create diashows. This is not possible with Easydrawer.

The software treats ellipses as standalone-primitives and needs no
splines to approximate them. It covers many ways to create and
handle curves. Some of them are Spline, B-Spline or Bezier-Curve.
The only problem with the provided user-friendly ways to create
curves is that all of them approximate points and none of them in-
terpolates them. This means the points do not neccessarily lie on
the surface of the curve. Finally to help not overloading the screen,
WinCAG only shows names of primitives when the mouse is moved
over the specific object.

WinCAG is mainly intended as a demonstration tool which allows
teachers to produce a construction including a diashow and later
exhibit this show to students. Users who want to speed up their
creation process should use Easydrawer, when it provides the func-
tionality needed. Generally when the construction is to be empha-
sized Easydrawer is the better choice, whereas WinCAG should be
used when the presentation of technical drawing is more important.

3.1.3 Problems and Future Work

Even though this work mostly recommends Easydrawer, it never-
theless is never-failing. Splines can only have one y-value for each
x-coordinate, for example. This limits their use when it comes to
painting closed rounded surfaces because one spline needs to be
splitted-up into two separate splines.

Another restriction is that similar objects lying on top of each other
can not be distinguished. This goes hand-in-hand with the prob-
lem that primitives can sometimes not get their visibility marked,
because points do not really lie on existing lines and circles.

In the future Easydrawer should provide a makro functionality
to automatically repeat certain recorded construction steps. This

– 14 –

http://www.igpm.rwth-aachen.de/brakhage/Strobl/index.html
http://www.igpm.rwth-aachen.de/brakhage/Strobl/index.html

A APPENDIX

would bring the software into another grade of complexity because
users would be able to create their own “primitives”. So, for exam-
ple, the construction of an ellipse could be logged and afterwards
replayed on other input primitives to create another similar ellipse.
This feature could reduce the time required for performing repeated
tasks.

References

BÉZIER, P. 1966. Définition numérique des courbes et surfaces i.
Automatisme XI, 625–632.

DE BOOR, C. 1962. Bicubic spline interpolation. J. Math. and
Phys. 41(3), 212–218.

HEARN, D., AND BAKER, M. P. 2004, 1994, 1986. Computer
Graphics with OpenGL Updated Edition, third, international ed.
Pearson Prentice Hall.

HOUSE, P. D. H. Spline curves. [Online; http:
//www.cs.clemson.edu/~dhouse/courses/405/notes/
splines.pdf; accessed 25-November-2010].

TWIGG, C., 2003. Catmull-rom splines. [Online;
http://graphics.cs.cmu.edu/nsp/course/15-462/
Fall04/assts/catmullRom.pdf; accessed 24-November-
2010].

WIKIPEDIA, 2006. File:basic-construction-demo.png —
wikipedia, the free encyclopedia. [Online; http://en.
wikipedia.org/wiki/File:Basic-construction-demo.
png; accessed 10-November-2010].

WIKIPEDIA, 2010. Compass and straightedge constructions
— wikipedia, the free encyclopedia. [Online; http:
//en.wikipedia.org/w/index.php?title=Compass_
and_straightedge_constructions&oldid=394802031;
accessed 10-November-2010].

A Appendix

– 15 –

http://www.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
http://www.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
http://www.cs.clemson.edu/~dhouse/courses/405/notes/splines.pdf
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf
http://graphics.cs.cmu.edu/nsp/course/15-462/Fall04/assts/catmullRom.pdf
http://en.wikipedia.org/wiki/File:Basic-construction-demo.png
http://en.wikipedia.org/wiki/File:Basic-construction-demo.png
http://en.wikipedia.org/wiki/File:Basic-construction-demo.png
http://en.wikipedia.org/w/index.php?title=Compass_and_straightedge_constructions&oldid=394802031
http://en.wikipedia.org/w/index.php?title=Compass_and_straightedge_constructions&oldid=394802031
http://en.wikipedia.org/w/index.php?title=Compass_and_straightedge_constructions&oldid=394802031

A APPENDIX

E
a
sy

d
ra

w
er U

serg
ru

p
p

en
test a

m
 2

3
.0

6
.2

0
1

0
B

R
G

7 K
andlgasse, K

lasse: 7A
B

H
andout

A
b

b
.
1

:
E

asydraw
er U

ser-Interface B
eschreibung

T
astatureingabem

öglichkeiten kennen lernen

1.
B

eispiel: D
reieck (leichtes E

inführungsbeispiel m
it E

rklärungen)
G

egeben sind die E
ckpunkte eines D

reiecks: A
(-100|0),

B
(0|-88,4) und C

(100,5
|0).

B
enennen

S
ie

diese
P

unkte
entsprechend

der
A

ngabe
(n
à

p
à

[P
unkt

w
ählen]

à
[T

ext
eingeben][E

nter zum
 A

bschluss der T
exteingabe]).

E
rstellen S

ie L
inien, die durch diese E

ckpunkte gehen (là
[P

unkt w
ählen]

à
[P

unkt w
ählen]).

E
rzeugen

S
ie

eine
gefärbte

D
arstellung

dieses
D

reiecks
(a
à

là
[L

inie
w

ählen]
à

là
[L

inie
w

ählen]à
là

[L
inie w

ählen][E
nter zum

 A
bschluss]).

F
ärben S

ie die D
reiecksfläche grün (ià

a
à

[F
läche

w
ählen]

à
[F

arbnam
en oder H

ex-W
ert d

er
F

arbe tippen z.B
.: green oder #00ff00

][E
nter zum

 A
bschluss]).

S
tellen S

ie die S
ichtbarkeit der L

inien auf
v

isib
le ein (v

à
là

[L
inie w

ählen]
à

[S
tartpunkt

w
ählen]à

V
à

[E
ndpunkt

w
ählen]

à
N

[E
nter

zum

A
bschluss]).

B
eachten

S
ie

hier,
dass

die
beiden P

unkte exak
t auf der L

inie liegen m
üssen, die S

ie angegeben haben. W
echseln S

ie m
it

F
7 oder F

8
 zum

 S
ichtbarkeitsm

odus „invisible parts dotted“ oder „invisible parts ignored“ um

den E
ffekt zu sehen. M

it
F

5
 bzw

. F
6

 kom
m

en S
ie in den S

ichtbarkeitsm
odus „show

 all“ oder
„helplines ignored“ zurück. W

iederholen S
ie die S

chritte für die restlichen L
inien und für die

grüne F
läche (v

à
a
à

L
[m

it „L
“ w

ird in vielen S
ituationen im

 P
rogram

m
 das zuletzt erzeugte

O
bjekt des entsprechenden T

yps autom
atisch ausgew

ählt]à
V

).
G

eben S
ie dem

 P
rojekt den T

itel „G
rünes D

reieck“.
W

echseln S
ie zum

 S
ichtbarkeitsm

odus „invisible parts ignored
“ (F

8
),

zoom
en S

ie sow
eit w

ie
m

öglich heran, ohne m
it einem

 T
eil der S

chrift das D
reieck zu verdecken und zentrieren S

ie das
D

reieck. P
robieren S

ie hier evtl. den E
ffekt der „E

nde“- und „P
os1“-T

aste (das
B

ild kann m
it

den C
ursortasten verschoben w

erden).

S
peichern S

ie das P
rojekt in Ihrem

 V
erzeichnis im

 U
nterordner „easydraw

er“ unter dem
 N

am
en

„bsp1.drw
“.

D
as

P
rogram

m

speichert auch die aktuellen
Z

oom
-

und
C

enterw
erte

und
 den

aktiven S
ichtbarkeitsm

odus ab.
S

peichern S
ie den aktuellen S

creen als B
ild „bsp1.png“ im

 gleichen V
erzeichnis ab.

2.
B

eispiel: Innkreism
ittelpunkt eines D

reiecks konstruieren.
E

rzeugen S
ie ein D

reieck aus 3 beliebigen E
ckpunkten und definieren Sie, w

ie im
 vorigen

B
eispiel, die S

ichtbarkeit für die L
inien. (D

iesm
al keine F

läche)
K

onstruieren S
ie nun den Innkreism

ittelpunkt dieses D
reiecks und benennen S

ie ihn m
it „I“.

T
IP

P
:

M
achen S

ie alle P
rim

itive, die als H
ilfslinien/-punkte anzusehen sind, sofort w

enn S
ie

sie nicht m
ehr brauchen zu H

ilfsprim
itives und arbeiten S

ie generell im

F
6-M

odus. D
adurch

bleibt die Z
eichenfläche m

öglichst übersichtlich.
K

onstruieren S
ie den Innkreis. H

ier gibt es einen S
pezialfall zu beachten: A

ngenom
m

en
d

er
M

ittelpunkt
eines

K
reises

und
eine

seiner
T

angenten
sind

bekannt,
dann

können
S

ie
m

it
c
à

[M
ittelpunkt w

ählen]à
d
à

là
[T

angente w
ählen]

à
[L

eertaste, um
 die erneute A

usw
ahl des

M
ittelpunkts zu erm

öglichen][M
ittelpunkt w

ählen] den K
reis konstruieren.

A
nschließend

definieren
S

ie
für

Innkreism
ittelpunkt

und
Innkreis

den
„v

isib
le“

S
ichtbarkeitsm

odus.
D

efinieren S
ie w

eiters S
ichtbarkeit „h

id
d

e
n“ für die 3 E

ckpunkte des D
reiecks und w

echseln
S

ie anschließend in den F
7 M

odus. (S
ie sehen, dass die P

unkte hier nun sichtbar sind)
O

p
tio

na
l: E

rw
eitern S

ie die Z
eichnung um

 die anderen 3 ausgezeichneten P
unkte im

 D
reieck

(H
öhenschnittpunkt, S

chw
erpunkt und U

m
kreism

ittelpunkt) und zeichnen S
ie die E

ulersche
G

erade ein. G
eben S

ie den P
unkten die N

am
en „H

“, „S
“ und „U

“.

K
licken S

ie jetzt auf den B
utton

 und w
ählen S

ie einen P
unkt des D

reiecks aus. B
ew

egen S
ie

die M
aus etw

as. W
enn S

ie fertig sind, klicken S
ie erneut

auf die Z
eichenfläche.

G
eben S

ie dem
 P

rojekt den T
itel „B

esondere P
unkte im

 D
reieck“.

S
peichern S

ie das P
rojekt in Ihrem

 V
erzeichnis im

 U
nterordner „easydraw

er“ unter dem
 N

am
en

„bsp2.drw
“. S

peichern S
ie den aktuellen S

creen als B
ild „bsp2.png“ ab.

3.
B

eispiel: K
onstruktion einer E

llipse
K

onstruieren S
ie eine E

llipse in 1. H
auptlage m

it a
=

1
5
0 und b

=
8

0.
B

enutzen S
ie die S

cheitelkrüm
m

ungsk
reise, um

 m
öglichst w

enige E
llipsenpunkte konstruieren

zu m
üssen.

K
onstruieren S

ie die B
rennpunkte und benennen S

ie sie F
1 und F

2 um
 die E

llipsenpunkte
konstruieren

zu
können.

S
piegeln

S
ie

die
auf

einer
S

eite
gew

onnenen
E

llipsenpunkte
m

it
(m

à
[P

unkt w
ählen]à

Y
) auf die andere S

eite.
B

enutzen
S

ie
C

atm
ul-R

om
-S

plines
um

die

konstruierten
E

llipsenpunkte
zw

ischen
den

S
cheitelkrüm

m
ungskreisen zu verbinden.

F
ertigen S

ie die E
llipse so aus, dass im

F

8
 S

ichtbarkeitsm
odus nur die E

llipse zu sehen ist.
A

chten S
ie darauf, dass die E

llipse m
ö

glichst kontinuierlich verläuft.
S

peichern S
ie das P

rojekt in Ihrem
 V

erzeichnis im
 U

nterordner „easydraw
er“ unter dem

 N
am

en
„bsp3.drw

“. S
peichern S

ie den aktuellen S
creen als B

ild „bsp3.png“ ab.

K
om

plexeres B
eispiel –

 1-2-A
chse (als „12achse.drw

“ speichern)

G
eg.:D

reieck m
it A

(260|-200|100),
B

(20|-40|280) und
C

(180|230|10).
G

es.:Innkreis dieses D
reiecks in G

rund
- und A

ufriss (R
esultat: D

reieck und Innkreis).
T

ipps: In
F

6 konstruieren und O
bjekte zu H

ilfslinien m
achen, sobald sie

nicht m
ehr benötigt

w
erden,

P
unkte

benennen,
D

reiecksseitenlinien
so

früh,
w

ie
m

öglich
v

isib
ility

geben,
A

ffinitätsachse w
egen Ü

bersichtlichkeit färben, P
rim

itives in N
ull-L

age
in

v
isib

le m
achen.

V
ielen D

ank fürs M
itm

achen!
T

hom
as W

einer

Figure 24: User-test Handout.

– 16 –

A APPENDIX

Fragebogen – Usergruppentest am 23.06.2010

• Sie sind männlich [] / weiblich [] ?

• Fällt Ihnen ein passenderer Name für das Programm ein?

• Wenn etwas am Papier zu zeichnen waere, wuerden Sie statt dessen dieses Programm

verwenden?

• Können Sie sich vorstellen dieses Programm in eigenen Projekten (außerhalb der Schule) zu
verwenden?

• Ist die Benutzereingabe einfach/schnell zu lernen?

• Ist die Benutzereingabe um die Primitives zu erzeugen intuitiv/logisch? Wenn nein, was würden
Sie ändern? Wenn ja, was hat Ihnen besonders gefallen?

• Stört Sie die verstärkte Verwendung der Tastatur zur Eingabe von Primitives?

• Können Sie (sich vorstellen) durch Verwendung dieses Programms schneller/effizienter und

exakter zu zeichnen, als per Hand?

• Haben Sie in der Testzeit feststellen können, ob dieses Tool für Sie eine Lernhilfe sein kann?

• Fehlt Funktionalität, die bei Konstruktionen mit der Hand manchmal benötigt wird?

• Ist Ihnen eine Möglichkeit zum Löschen von Primitives abgegangen (vorallem weil es eine

undo-Funktionalität gibt)?

• Sind beim Konstruieren mit diesem Programm bzw. am Papier unterschiedliche

Herangehensweisen nötig? Wo liegen die Unterschiede (bitte genau erklären)?

• Zeichnen Sie generell lieber am PC oder per Hand und warum?

• Wuerde Ihnen das Zeichnen mit Bleistift, Lineal und Zirkel fehlen?
Sollte in Zukunft immer der PC verwendet werden?

• Sonstige Bemerkungen?

Figure 25: Questionnaire.

– 17 –

A APPENDIX

Figure 26: Construction of a triangle’s in-circle.

– 18 –

A APPENDIX

Figure 27: Construction of a house in central projection.

– 19 –

	Introduction
	Theory
	Ruler-and-Compass Construction
	Easydrawer's Visualization Support
	Areas
	Catmull-Rom Splines

	Keyboard Input System
	Dynamical Command-Line Construction
	Multiple Primitive Selection in Command-Lines

	User-Test
	Questionnaire
	Interpretation of the Questionnaire
	Opinion of the Teacher
	Evaluation Process

	Results and Conclusion
	Comparison with other Software
	Geogebra
	WinCAG
	Problems and Future Work

	Appendix

